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Content
Co-design Strategy

Preliminary Demonstrator for HL LHC : Data Concentrator ASIC for HG Cal
e Establish feasibility
e Establish methodology

Moving Intelligence to the data source (Ideas to be demonstrated)
e Neuromorphic Digital implementation

e Analog implementation using floating gates

e Analog implementation using memristive cross-bar arrays

Creating a distributed Al model



High Radiation
Limited Power/Material budget

O
Where should this intelligence be added

On-detector intelligence using on-chip Machine Learning
e Resource constrained environment

E Heterogenous System
in Package

System
on Chip
Digital scaling / Integrated non-volatile memory
Mixed signal approach = D . / 3DIC / Photonics/ Wireless 5
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z o Ultra-low energy per inference at
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o Reprogram both network and parameters
On-chip learning / inference

e Physics based Algorithms

Independent events

o
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Physics based Al o Depth vs. classification
CNN / SNN/ Transfer
learning/ Distributed Al

HL-LHC / XFEL /
Synchrotron light sources



Partnership Neuromorphic community

Staged approach
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Deep Neural Network: Autoencoder for data-compression

Compressed data

On-detector ASIC - Efficient power and bandwidth usage
Original data
| Off-detector FPGA  Reconstructed
Rate: 40MHz data

- o Work in latent space
e Pruned network

reconfigurable e Full decoding with mirror weights

Enable edge compute : Data compression for efficient usage of power and bandwidth
Programmable and Reconfigurable: ability to reprogram weights to adjust for detector conditions and

eventually lead to self-learning intelligent detectors

Hardware — Software codesign : Algorithm driven architectural approach
Optimized : Low power and Low latency

Operating in extreme radiation environment: 200 M rad

Autoencoder for data compression is the first use case towards a DNN based on-chip learning and inference®



HL LHC High Granularity Calorimeter*: Data flow

CNN: Encodes information by correlating spatial features

» conv2D layer — extract spatially corelated geometric features

* Flatten layer — Vectorizes the 2D image from the conv2D layer [8 x 4 x 4 = 128 x 1]

* Dense layer — aggregates the various features to provide higher order information

* ReLU - an activation function which introduces non-linearity by applying thresholds (part of both the

conv2D and dense layers)
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Physics Driven Hardware Co-design

® Algorithm development based on Physics data
® hls4ml simplifies the design of on-chip ML accelerators

ALGORITHM ‘ *\ m | his4ml directives | << | HLS directives |
DEVELOPMENT C++ library of ML functionalities optimized for HLS
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&;Training ® T.MR4sv_hIS: Triple Modular Redundancy tool for System
l * Verilog & HLS
Part: .. S
tessaricer: - hi = HARDWARE
wwe . > hls 4 m ACCELERATOR
= HLS
&/. :"“ 0t B0, ne crion) Directives TMR4SV—hIS
hlS4m1 ;;’t :oj::i i <.1o,: i++) ’_)—D
Directives o l =Dy
a®l.- T D5
8 ‘0 - : i ; k)aaz(A, B); H LS D"DDDO
e L= RTL
Performance
CH++ I @& Hardware DSl

Specification  Technology Library Implementation(s)



Rapid design prototyping
Neural Network architecture optimization

. | Sensor output NN outputs
Lower EMD is better 0. bandwidth — 6
Network Architecture Relative Power & Area Relative Performance —|— 64 bits 10

Test feature Geometry | # filter |kernel| stride| pooling | # params |# operations | EMD Mean| EMD RMS 3.5 1 --- 160 bits — 16
[ Reference 4x4x3 8 3x3 1 none 1.00 1.00 1.00 1.00

4x4x3 -> 8x8 8x8 8 3x3 | 1 none 2.73 1.76* 0.64 0.41 o 301

max pooling 8x8 8 |3x3] 1 2x2 0.71 0.97* 0.59 0.33 5.

3x3 -> 5x5 kemel 8x8 8 5x5 1 2x2 0.99 2.76 0.64 0.35
I pooling -> stride=2 8x8 8 3x3 2 none 0.94 0.59 0.76 0.46 2.0

8 -> 10 filters 8x8 10 3x3 2 none g 3 [T 4 0.73 0.73 0.43

8 -> 6 filters 8x8 6 3x3 2 none 0.70 0.44 0.85 0.57 1.5 1

* zero operations removed
Step Type | Run Time | Iterations Size o 0 10 15 20
Model generation D 1s 1.1k lines of | Network Occupancy [1 MIP; cells]
C Simulation v 1s 207100 B °rtmization
HLS D 30 min 3-100 40k lines of | Design . i i
RTINsimulation v i verilog optimization Metric Simulation Target
Logic synthesis D 6 hrs e Power 48 mw <100 mW
Gate-level sim \ 30 min 9 Energy / inference 1.2 n N/A
Place and rou.te D 50 hrs 6 Increasing time Area 2.88 mmz2 <4 mm?2
Post-layout sim — 780k gates | and complexity Gates 780k N/A
Post-layout parasitic sim \' 2 hrs
= = Latency 50 ns <100 ns

SEE simulation \Y 4 hrs
Layout D 20 min 1 7.6M
LVS and DRC Y 1 hr transistors




Co-design with algorithm

/ Goals for scientific discove

/ System level constraints \

New Machine learning
algorithms for data
processing (feature

Pixel level
solution

Novel Device Development
Highly Granular Sensors
capable of producing both
precise timing as well as

charge information ROIC

®

extraction and fast Inference)

Top level

Architecture /

e Convert raw data to physics information
Reconfigurable pixel clusters for classification dependent on detector
geometries

e Create hierarchical network and enable parallel computation.

16



Pixel Detector: Proposed ML implementation 17

Analog — Mixed Signal implementation using
floating gates or memristive cross-bar arrays

« Ability to work in the
\ latent space
(downstream

resources)

Digital neuromorphic implementation

Sensor
(Preamp)

Sensor
(Preamp)

« Reconfigurability vs.
Sensor pruning?

(AFE)

* On-chip inference
vs. on-chip training?

Sensor
(AFE) » Light weight

models?
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Use digital spiking neural network

Local neighborhood for 15t stage
of classification

© ComPUte total energy and track Incoming Spikes  Synaptic Weights ~ Weighted Output Spikes
angle by spatio-temporal Input Spikes
correlation g t

Spiking
—J_J—’t
t

Mature systems are based on
these SNNs e.g. Loihi, True-North,
Spinnakar (in adv geometry
nodes)

Low—power since it runs without a
clock

HL- LHC case- since events are
uncorrelated between bunches we
don’t need a complex network
requiring historic information 19
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Vector Matrix Multiplication

e Analog implementation
e Small footprint, programmable, large
resistors

e Basic building block of neural network

Vector-by-Matrix Multiplication ... ... by Analog Circuit
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J. Hasler, Georgia Tech

Integrate a Field programmable Analog Array (FPAA)

e Programmable Floating gate transistors for weights and
switches

e Structures are available in standard CMOS process (have
been demonstrated in 350 nm to 40 nm nodes)
Radiation performance — unknown

]
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e Uses operation transconductance amplifier (OTA) with L, Wi1 = f(Viga, Vign1)
floating gates for Vector Matrix multiplication — lﬂ }IHF }iHl- }lHl- _IF'H"
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Memristive cross-bar arrays

» Use of programmable resistors (1 — 10 GQ
« Small footprints ( < 1um?)

UC Santa Barbara’s Metal-Oxide Memristors

= 64 x 64 passive crossbar circuit

TiN (80 nm)
Al (90 nm)
Ti (15 nm)

Al (70 nm)
Ti (10 nm)
SiO,/Si

H. Kim et al. arXiv 2019

Background work: M. Prezioso et al., Nature 521, 61 2015, M. Prezioso et
al. IEDM’15 p. 17.4.1, 2015, F. Merrikh Bayat et al. Nature Comm., 2018

= Typical I-V characteristics
103

Abs Current [A]

-1.0 0.0 +1.0
Voltage [V]

Details:

- ALO,4/TIO,, active bilayer by reactive sputtering

- CMOS-compatible CMP/dry etching process and TiN/Al
electrodes for higher conductance

- ~250 nm wide lines

- The largest functional analog-grade passive memristor crossbar
circuit supported by proper statistics

D. Strukov, UCSB
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Data collection and processing split at 3 levels

Sensors: Single
ASICs

Devices: Detectors /
Data concentrators
Off Devices:
Processing farms

Commercial - Qualcomm

Devices generate and possess massive amounts of data

Off-device data

e

Cloud data/rich content Calendar
©0 4
# h 4
loT data Messaging
/w\
%
Apps

On-device data

Sensor data

w 24 °

Environment Fingerprint ~ Ambient light

Y |
Camera Microphone Temperature
> e
)
Gyroscope Pulse Eye tracking

1 ] % w
s
Compass

7y e 4

Humidity

BN
& (O
Z Sensor fusion
CV2x and processing

On-device Al processing of sensors and personal information conserves

bandwidth while providing contextual intelligence, personalization, and privacy
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ance Al performance using 5G/wireless

Commercial - Qualcomm
Distributed computing enables a responsive voice Ul

5G low latency allows Al tasks to be split between the device and cloud

Less privacy and Continuously

personalization L2 9 learns based on
l\%]fl personal
r‘? {‘ ., Automatic speech information and
recognition acts intuitively
Service e SMS e Maps Ny with immediacy

manager M understanding ¢

e Weather e News
Echo cancel.

e Video e Music ¥ Texttospeech speech denoising

Both ends are needed — 5G allows various implementation for appropriate tradeoffs

Communicate between layers for more efficient data processing

Correlations between layers can provide the best compression

Local edge cloud can allow for low latency partial processing offload

Use as continuous learning, additional capacity and maybe increase precision 24



Conclusion

e Algorithms, Design Tools and Hardware must be co-designed for efficient
implementation

e Analog-Mixed Signal & Beyond CMOS techniques can provide energy

efficient computation, and their reliability in extreme environments need to
be explored

e 5G/6G/Wireless can enable distributed Al for responsive autonomous
systems

e A staged approach could lead to robust solutions

25



